
Implementation of snapshot capability within LVM
Radix Targets

Anirban Sinha

Department of Computer Science
University of British Columbia, Canada

anirbans @ cs.ubc.ca

ABSTRACT

Logical volume management (LVM) provides a higher-level
view of the disk storage on a computer system than the
traditional view of disks and partitions. This gives the system
administrator much more flexibility in allocating storage to
applications and users. Storage volumes created under the
control of the logical volume manager can be resized and
moved around almost at will, although this may need some
upgrading of file system tools. In order to map a device into a
blockstore, currently Logical Volume Manager within Linux
supports three different types of targets, namely, linear,
stripped and error. Abhishek∗ has designed a radix tree target
for LVM with which we can pull in existing devices into the
blockstore thus creating a virtual disk image (VDI) for the
actual physical device. However, prior to this work there was
no facility to create snapshots of existing Virtual Disk Image
devices in the target. The primary work of this paper is to
implement snapshot capability within the radix target so that
we can duplicate read-only & read write snapshots for
existing VDI’s.

C.R Categories: D.4.1 [Operating Systems]: Process
Management; D.4.2 [Operating Systems]: Storage
Management; H.3.2 [Information Storage]: File Organization

Keywords: Logical volume management, snapshots, radix
targets, parallax.

1 INTRODUCTION

There has been a tremendous interest in virtual machine
technology lately. With modern hardware supporting
powerful processors with high processing speeds coupled
with availability of large primary memory & huge amount of
secondary storage, we can now imagine running of multiple
operating systems in parallel on a single hardware using
virtual machines which is reminiscent of mainframe
architectures. However, from a file system’s perspective one
major challenge is to use disk space efficiently, especially
when large number of VM instances is forked. Each VM’s
require at least one fixed sized disk partition for utilization.

∗ Abhishek Gupta (agupta@cs.ubc.ca), a current second year
masters student in the DSG group.

Further, each of these VM does require identical software
images to be available on their allocated disk space.
Linux LVMs with support for snapshots are an important
concept in this direction. It allows the administrator to create
a new block device which presents an exact copy of a logical
volume, frozen at some point in time. Linux LVM1 has
read-only snapshots. Read-only snapshots work by creating
an exception table, which is used to keep track of which
blocks have been changed. If a block is to be changed on the
origin, it is first copied to the snapshot, marked as copied in
the exception table, and then the new data is written to the
original volume.
The current version of LVM, LVM2, supports snapshots are
read/write by default. Read/write snapshots work like read-
only snapshots, with the additional feature that if data is
written to the snapshot, that block is marked in the exception
table as used, and never gets copied from the original
volume. It is extremely useful in the context of XEN, a
virtual machine monitor. One can create a disk image, then
snapshot it and modify the snapshot for a particular domU
instance. One can then create another snapshot of the original
volume, and modify that one for a different domU instance.
However, one major concern of LVM’s is that before a write
is performed on the original disk image, original data has to
be copied to all the existing snapshots which overtly taxes
systems running large multiple VM’s at the same time. Also,
LVM does not support creation of recursive snapshots.
To overcome these problems of LVM, Parallax [1], a
distributed storage system, uses a radix tree based user level
block storage manager to support rapid creation of snapshots
& use copy-on-write mechanism for writable snapshots. It
was in the lights of this idea that Abhishek designed a radix
tree target in LVM similar to Parallax that effectively
addresses the drawbacks related to current LVM
implementation. However, prior to this work, no snapshot
capability existed within his designed system. The primary
concern of this paper is the design & implementation of
read/write snapshot capabilities within the radix target in
LVM similar to the work described in Parallax.
In this work, the author has continuously collaborated with
Abhishek for fulfilling the target objectives.
The rest of the paper is organized as follows. Section 2
describes some related work in the area. Section 3 describes
the blockstore architecture in detail. Section 4 describes the
radix tree implementation & mapping mechanism. Section 5

goes into describing the actual snapshot mechanism. Section
6 suggests some future work in the direction & draws the
final conclusion.

2 RELATED WORK

Warfield et al describes Parallax[1], a distributed storage
system that used radix tree like architecture. The same
authors also describe XEN, a popular virtual machine
monitor in an earlier paper[2]. Samuel T. King et al [8]
describes virtual machines & a novel way to debug operating
systems through snapshots & check pointing.

3 BLOCKSTORE ARCHITECTURE

The current blockstore architecture for radix implementation
segments the entire blockstore into several data structures.
Figure 1 describes the details of the blockstore data structure.
We implemented the blockstore as a loopback device created
by generating a 1 GIG flat file from /dev/zero device and
attaching it to /dev/loop0. As of now, it has not been tested
on actual physical device.

Figure 1: Blockstore Data structure

4 RADIX TREE ARCHITECTURE

At present we have three levels in our radix tree
implementation. We use least significant 27 bits of the
logical address to select a specific offset within a radix node.
The 27 bits are separated into three sets of 9 bits each for
each of the three levels to select a specific offset address

within that node that contains the pointer to the next node in
the next level. For example bits 26-18 designate an offset
into the first level node that has pointer (an address) for the
next second level node. The middle 9 bits designates offset
into the second level node that points to the next, i.e., third
level node & so on. In our code, we use the variable “key” to
keep track of the logical address. The last level radix nodes
contain addresses of physical blocks where data is to be
stored.
The least significant bit of each of the entries within the radix
node designates whether the next level node is read-write or
read-only. If bit is 1, the node (or block) is writable. Else, it
is only readable. There are 512 entries for each radix node
each of them pointing to a next level radix node. Each entry
of a radix node is of length 64 bits. The function
getid()extracts the address part of the field whereas the
function iswritable() checks whether the last bit is set
so that the node or block is writable. The definitions of the
two functions are given below:

define
getid(x)(((x)>>1)&0x7fffffffffffffffLL)

#define writable(x) (((x)<<1)|1LL)

The data structure target_type gives the entry point to
kernel for radix targets in blockstore. Figure 2 shows the
details of the target_type data structure.

In Figure 2, member .name specifies the string to use in the
table for dmsetup to recognize a radix type target. The
member .ctr specifies the radix constructor that will get
executed to initialize a radix blockstore. It reads the table,
checks the operation to perform, like “copy” or “snap” &
executes the corresponding block of code. Similarly .dtr
points to the destructor function. “.map” designates the
mapping function that maps from logical address to physical
block address. In our case, this is the radix_map which
uses a synchronous kernel IO function to read a physical
block from disk.

1 2 3 …4 5 6

VDI 1
Eg: /dev/mapper/md1

1: Radix superblock-keeps a magic number that
 shows that it’s a valid superblock.
2: Radix registry-keeps track of available free
 blocks within blockstore.
3: Universal radix root-has pointers to all
 individual VDI radix superblocks.
4: Radix root block for VDI 1.
5: Superblock for VDI 1. Has pointer that points
 to address of VDI radix root.
6: Other radix nodes (metadata blocks) & data
 blocks for VDI 1.
7: Radix root for VDI 2. The sequence begins
 again.

VDI 2
Eg: /dev/mapper/md2

7

Specific to
a blockstore

static struct target_type radix_target = {
 .name = "radix",
 .version= {1, 0, 1},
 .module = THIS_MODULE,
 .ctr = radix_ctr,
 .dtr = radix_dtr,
 .map = radix_map,
 .status = radix_status,
};

Figure 2: Kernel data structure that defines entry point for radix

target operations.

5 SNAPSHOT MECHANISM

The snapshot mechanism is discussed in two sections.
Section 5.1 describes the initial snap shot creation operation
& provides the pseudo code for it. Section 5.2 describes the
copy on write mechanism that is employed when one
attempts to write to a snap shot.

5.1 SNAPSHOT CREATION

The user specifies the source VDI device for which snapshot
is to be created in the table that is read by dmsetup.
There after, the algorithm that is used to create initial
snapshot is described in Figure 3. The actual kernel code is
provided in the appendix.

5.2 COPY-ON-WRITE ON A SNAPSHOT DEVICE

To allow for read-write snapshots we use the copy on write
mechanism. For this purpose we observe that if the operation
is writing, the mapping function should allocate a new block
on the physical disk (which is either a data block or a meta
data block), copy the contents of the old block of the original
device into the newly allocated block & return the address
for the new block. Hence we modify our mapping function to
accommodate for this operation. Our copy on write algorithm
is described in Figure 4 & original kernel code is provided in
the appendix.
In this algorithm, root denotes the address of a radix node at
each level & key denotes the logical block number address.
The variable “op” here stands for the operation that caused
the lookup to be invoked, either READ or WRITE. The
argument “phy_blk_num” actually is a pointer to the
location containing the actual address of the newly created
block in the disk.

It is clear from the algorithm that on each write operation, a
new disk block is allocated on the physical device & all the
node entries along the path from the root of the tree to the
physical block become writable. This is explained in the
Figure 5 which is actually taken from the Parallax paper[1].

Figure 5: The snapshot mechanism (taken from the Parallax

paper).

Create_Radix_Snapshot:
blockstore, device_id

Step 1: Read vdi superblock from source
device specified in the table.

Step 2: Find the radix root address from
the superblock pointer.

Step 3: Using the source radix root
address, create a clone of the source
radix root & allocate the clone in the
blockstore.

Step 4: Allocate a new radix superblock
for the snapshot device & make it point to
the cloned radix root.

Figure 3: Radix Snapshot creation Algorithm

Radix_lookup_copy_on_write:
device, blockstore,height, root,
key,phy_blk_num, op

Step 1: IF height=0 & op=WRITE
Step 2: Clone the original data block
Step 3: Make the new block writable
Step 4: Store the address of the
 newly allocated block in
 phy_blk_num & also return it.
Step 5: ELSE IF op=READ & height=0
Step 6: Return the physical address of
 data block in secondary device.
 END IF
Step 7: IF height>0 & root not writable
Step 8: Clone root & make all entries
 read_only
 END IF
Step 9: Calculate new height for child.
Step 10: Calculate offset from key.
Step 11: Call this function recursively
 with new height &
 root=node[offset] & save the
 child address returned in
 child_address.
Step 12: Assign node[offset]=child_address
Step 13: Save the radix node on disk &
 make its address writable
Step 14: Return root’s address.

Figure 4: Lookup Copy on write algorithm

6 CONCLUSIONS AND FUTURE WORK

With our design, it is possible to create read-write snapshots
of existing virtual disk images in the blockstore & also make
recursive snapshots, that is, create snap shots of snap shots.
We have tested this against pulling in loopback devices in
blockstore & creating their snapshots. We have tested the
writable logic by creating a junk file in VI editor & trying to
save it on the snapshot device. We have also tested our
system by creating snapshots of already existing snapshots &
testing their writable nature. We have not done any
benchmarking though on these writings or creation of
snapshots. These are left as a future extension of this work.

Another major work that we were unable to accomplish is to
make the writable logic asynchronous by using an
asynchronous kernel call from the mapping function. To
make snapshot creation fast & effective, we must also
incorporate buffer cache mechanism for faster writes.
Currently, when two or more processes try to write on the
snapshot device at the same time one of them blocks. This
can be prevented by using asynchronous calls along with
buffer cache protection during updates. It would be really
interesting to benchmark these optimizations against
traditional LVM operations.

REFERENCES

[1] A. Warfield, R. Ross, K. Fraser, C. Limpach, and S.
Hand. Parallax: Managing Storage for a Million Machines. In
Proceedings of the 10th USENIX Workshop on Hot Topics
in Operating Systems (HotOS-X), Santa Fe, NM, June 2005.
[2] Xen and the Art of Virtualization, by P. Barham, B.
Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.
Neugebauer, I. Pratt, A. Warfield, Proceedings of the
Nineteenth ACM symposium on Operating systems
principles, October 2003, 164--177.
[3] Efficient Disk management for Virtual Machines,
Abhishek Gupta & Norman C. Hutchinson
[4] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C.
Limpach, I. Pratt, and A. War_eld. Live migration of virtual
machines. In Proc. USENIX Symposium on Networked
Systems Design and Implementation, 2005
[5] LVM 2 user manual at http://sources.redhat.com/lvm2/
[6] The Linux Kernel Source Code from kernel.org
[7] LVM How to page from
http://www.tldp.org/HOWTO/LVM-HOWTO/index.html
[8] Debugging operating systems with time-traveling virtual
machines, by S. King, G. Dunlap, P. Chen, Proceedings of
2005 USENIX Annual Technical Conference, 2005.

Appendix: Source Codes

A. Radix Snapshot Creation

static int radix_ctr(struct dm_target *ti, unsigned int argc, char **argv)
{

/* ... other codes */

if(strcmp("snap",argv[2]) == 0) { /*

“snap” is the keyword that specifies snap operation */
 int dev_id;
 vdi_superblock *target_vds = NULL;
 uint64_t snap_radix_root;

 if (sscanf(argv[3], "%d", &dev_id) != 1) {
 ti->error = "dm-radix: Invalid device address";

 error = EINVAL;
 goto bad_bs;
 }
 printk ("%s: dev id = %d\n", __func__, dev_id);
 if ((target_vds = vdi_superblock_lookup(rc->dev, dev_id)) == NULL) {

ti->error = "dm-radix: Source device for snapshot not found in block
 store";

 error = ENXIO;
 goto bad_bs;
 }
 /* Ok, now we have confirmed that source device exists in blockstore */

 /* rc->vds also gives us the address of the vdi superblock */

 /* read vdi radix root address & clone the target radix root*/
 printk ("%s: target vdi radix root = %llu\n", __func__,
 vdi_get_radix_root(target_vds));
 snap_radix_root = clone_radix_root (rc->dev, bs, vdi_get_radix_root
 (target_vds));
 printk ("radix root for snapshot = %llu\n", snap_radix_root);
 if (snap_radix_root == 0) {
 error = ENXIO;
 goto bad_bs;
 }
 /* create superblock, but do not create radix root */
 vds = create_vdi_superblock (rc->dev, bs,0x4565, dm_table_dev_minor(ti->table),
 0);
 vdi_set_radix_root (vds, snap_radix_root);

 r = write_vdi_superblock(rc->dev, bs, vds);
 if (!r) {
 ti->error = "dm-radix: Failed to write virtual disk superblock to disk";
 kfree (vds);
 dm_put_device (ti, source->dev);
 kfree (source);
 error = EIO;
 goto bad_dev;
 }
 else
 rc->vds = vds;
 ti->split_io = 8;
 }

/* other codes follow ...*/

}

B. Copy on Write Mechanism

uint64_t radix_lookup_copy_on_write(struct dm_dev *dev, blockstore *bs, int height,
 uint64_t root, uint64_t key, uint64_t *phy_blk_num, char rw)
{
 int offset;
 uint64_t child;
 radix_tree_node node = NULL;
 struct page *page;

 if (height == 0)
 {
 if (rw == READ) {
 *phy_blk_num = root;
 }
 else {
 *phy_blk_num = writable (clone_radix_block(dev, bs, getid(root)));
 }

 return (*phy_blk_num);
 }

 /* the root block may be smaller to ensure all leaves are full */
 height = ((height - 1) / RADIX_TREE_MAP_SHIFT) * RADIX_TREE_MAP_SHIFT;
 offset = (key >> height) & RADIX_TREE_MAP_MASK;

 /* We should never get a root which is Zero. */
 if (root == ZERO) {
 *phy_blk_num = ZERO;
 return ZERO;
 } else {
 page = read_radix_block(dev, getid(root));
 if (page != NULL) {
 node = (radix_tree_node)page_address(page);

 if (!iswritable(root)) {
 /* need to clone this node */
 int i;
 struct page *oldpage = page;
 radix_tree_node oldnode = node;

 page = alloc_page(GFP_KERNEL);
 memset (page_address(page), 0, PAGE_SIZE);
 node = (radix_tree_node)page_address(page);

 for (i=0; i<RADIX_TREE_MAP_ENTRIES; i++) {
 node[i] = oldnode[i] & ONEMASK;
 }

 block_page_put(oldpage);
 root = ZERO;
 }
 }
 else /* if page == NULL */ {
 printk ("Node %llu could not be read from device \n", getid(root));
 }
 }

 if (node == NULL) {
 return ZERO;
 }

 child = radix_lookup_copy_on_write(dev, bs, height, node[offset], key,
 phy_blk_num, rw);

 if (child == ZERO) {
 block_page_put (page);
 return ZERO;
 } else if (child == node[offset]) {
 /* no change, so we already owned the child */
 block_page_put (page);
 return root;
 }

 node[offset] = child;

 /* new/cloned blocks need to be saved */
 if (root == ZERO) {
 /* mark this as an owned block */
 lock_blockstore (bs);
 root = alloc_radix_block(dev, bs, page);
 unlock_blockstore (bs);
 if (root)
 root = writable(root);
 } else {
 if (write_radix_block(dev, getid(root), page) < 1) {
 block_page_put (page);
 return ZERO;
 }
 }
 block_page_put(page);
 return root;
}

