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ABSTRACT 

Logical volume management (LVM) provides a higher-level 
view of the disk storage on a computer system than the 
traditional view of disks and partitions. This gives the system 
administrator much more flexibility in allocating storage to 
applications and users. Storage volumes created under the 
control of the logical volume manager can be resized and 
moved around almost at will, although this may need some 
upgrading of file system tools. In order to map a device into a 
blockstore, currently Logical Volume Manager within Linux 
supports three different types of targets, namely, linear, 
stripped and error. Abhishek∗ has designed a radix tree target 
for LVM with which we can pull in existing devices into the 
blockstore thus creating a virtual disk image (VDI) for the 
actual physical device. However, prior to this work there was 
no facility to create snapshots of existing Virtual Disk Image 
devices in the target. The primary work of this paper is to 
implement snapshot capability within the radix target so that 
we can duplicate read-only & read write snapshots for 
existing VDI’s. 

C.R Categories:  D.4.1 [Operating Systems]: Process 
Management; D.4.2 [Operating Systems]: Storage 
Management; H.3.2 [Information Storage]: File Organization 

Keywords: Logical volume management, snapshots, radix 
targets, parallax. 
 
1    INTRODUCTION 
 
There has been a tremendous interest in virtual machine 
technology lately. With modern hardware supporting 
powerful processors with high processing speeds coupled 
with availability of large primary memory & huge amount of 
secondary storage, we can now imagine running of multiple 
operating systems in parallel on a single hardware using 
virtual machines which is reminiscent of mainframe 
architectures. However, from a file system’s perspective one 
major challenge is to use disk space efficiently, especially 
when large number of VM instances is forked. Each VM’s 
require at least one fixed sized disk partition for utilization. 
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Further, each of these VM does require identical software 
images to be available on their allocated disk space.  
Linux LVMs with support for snapshots are an important 
concept in this direction. It allows the administrator to create 
a new block device which presents an exact copy of a logical 
volume, frozen at some point in time. Linux LVM1 has 
read-only snapshots. Read-only snapshots work by creating 
an exception table, which is used to keep track of which 
blocks have been changed. If a block is to be changed on the 
origin, it is first copied to the snapshot, marked as copied in 
the exception table, and then the new data is written to the 
original volume.  
The current version of LVM, LVM2, supports snapshots are 
read/write by default. Read/write snapshots work like read-
only snapshots, with the additional feature that if data is 
written to the snapshot, that block is marked in the exception 
table as used, and never gets copied from the original 
volume. It is extremely useful in the context of XEN, a 
virtual machine monitor. One can create a disk image, then 
snapshot it and modify the snapshot for a particular domU 
instance. One can then create another snapshot of the original 
volume, and modify that one for a different domU instance.  
However, one major concern of LVM’s is that before a write 
is performed on the original disk image, original data has to 
be copied to all the existing snapshots which overtly taxes 
systems running large multiple VM’s at the same time. Also, 
LVM does not support creation of recursive snapshots.  
To overcome these problems of LVM, Parallax [1], a 
distributed storage system, uses a radix tree based user level 
block storage manager to support rapid creation of snapshots 
& use copy-on-write mechanism for writable snapshots. It 
was in the lights of this idea that Abhishek designed a radix 
tree target in LVM similar to Parallax that effectively 
addresses the drawbacks related to current LVM 
implementation.  However, prior to this work, no snapshot 
capability existed within his designed system. The primary 
concern of this paper is the design & implementation of 
read/write snapshot capabilities within the radix target in 
LVM similar to the work described in Parallax. 
In this work, the author has continuously collaborated with 
Abhishek for fulfilling the target objectives. 
The rest of the paper is organized as follows. Section 2 
describes some related work in the area. Section 3 describes 
the blockstore architecture in detail. Section 4 describes the 
radix tree implementation & mapping mechanism. Section 5 



goes into describing the actual snapshot mechanism. Section 
6 suggests some future work in the direction & draws the 
final conclusion. 
 
2     RELATED WORK 
 
Warfield et al describes Parallax[1], a distributed storage 
system that used radix tree like architecture. The same 
authors also describe XEN, a popular virtual machine 
monitor in an earlier paper[2]. Samuel T. King et al [8] 
describes virtual machines & a novel way to debug operating 
systems through snapshots & check pointing. 
 
3     BLOCKSTORE ARCHITECTURE 
 
The current blockstore architecture for radix implementation 
segments the entire blockstore into several data structures. 
Figure 1 describes the details of the blockstore data structure. 
We implemented the blockstore as a loopback device created 
by generating a 1 GIG flat file from /dev/zero device and 
attaching it to /dev/loop0. As of now, it has not been tested 
on actual physical device.   
 

 
Figure 1: Blockstore Data structure 

 
 

4     RADIX TREE ARCHITECTURE 
 
At present we have three levels in our radix tree 
implementation. We use least significant 27 bits of the 
logical address to select a specific offset within a radix node. 
The 27 bits are separated into three sets of 9 bits each for 
each of the three levels to select a specific offset address 

within that node that contains the pointer to the next node in 
the next level.  For example bits 26-18 designate an offset 
into the first level node that has pointer (an address) for the 
next second level node. The middle 9 bits designates offset 
into the second level node that points to the next, i.e., third 
level node & so on. In our code, we use the variable “key” to 
keep track of the logical address. The last level radix nodes 
contain addresses of physical blocks where data is to be 
stored.  
The least significant bit of each of the entries within the radix 
node designates whether the next level node is read-write or 
read-only. If bit is 1, the node (or block) is writable. Else, it 
is only readable. There are 512 entries for each radix node 
each of them pointing to a next level radix node. Each entry 
of a radix node is of length 64 bits. The function 
getid()extracts the address part of the field whereas the 
function iswritable() checks whether the last bit is set 
so that the node or block is writable. The definitions of the 
two functions are given below: 
 
# define 
getid(x)(((x)>>1)&0x7fffffffffffffffLL) 
 
#define writable(x) (((x)<<1)|1LL) 
 
The data structure target_type gives the entry point to 
kernel for radix targets in blockstore. Figure 2 shows the 
details of the target_type data structure.  
 
 
 
 
 
 
 
 
 
 
 
 
 
In Figure 2, member .name specifies the string to use in the 
table for dmsetup to recognize a radix type target. The 
member .ctr specifies the radix constructor that will get 
executed to initialize a radix blockstore. It reads the table, 
checks the operation to perform, like “copy” or “snap” & 
executes the corresponding block of code. Similarly .dtr 
points to the destructor function. “.map” designates the 
mapping function that maps from logical address to physical 
block address. In our case, this is the radix_map which 
uses a synchronous kernel IO function to read a physical 
block from disk.  
 
 

1 2 3 …4 5 6 

VDI 1 
Eg: /dev/mapper/md1 

1:   Radix superblock-keeps a magic number that  
       shows that it’s a valid superblock. 
2:  Radix registry-keeps track of available free 
       blocks within blockstore. 
3: Universal radix root-has pointers to all 
       individual VDI radix superblocks. 
4:    Radix root block for VDI 1. 
5:   Superblock for VDI 1. Has pointer that points 
       to address of VDI radix root. 
6:  Other radix nodes (metadata blocks) & data 
       blocks for VDI 1. 
7:  Radix root for VDI 2. The sequence begins 
      again. 

VDI 2 
Eg: /dev/mapper/md2 

7 

Specific to 
a blockstore 

static struct target_type radix_target = { 
 .name   = "radix", 
 .version= {1, 0, 1}, 
 .module = THIS_MODULE, 
 .ctr    = radix_ctr, 
 .dtr    = radix_dtr, 
 .map    = radix_map, 
 .status = radix_status, 
}; 
 
Figure 2: Kernel data structure that defines entry point for radix 

target operations. 



5    SNAPSHOT MECHANISM 
 
The snapshot mechanism is discussed in two sections. 
Section 5.1 describes the initial snap shot creation operation 
& provides the pseudo code for it. Section 5.2 describes the 
copy on write mechanism that is employed when one 
attempts to write to a snap shot.  
 
5.1 SNAPSHOT CREATION 
 
The user specifies the source VDI device for which snapshot 
is to be created in the table that is read by dmsetup. 
There after, the algorithm that is used to create initial 
snapshot is described in Figure 3. The actual kernel code is 
provided in the appendix.  
 
 
 
  
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
5.2 COPY-ON-WRITE ON A SNAPSHOT DEVICE  
 
To allow for read-write snapshots we use the copy on write 
mechanism. For this purpose we observe that if the operation 
is writing, the mapping function should allocate a new block 
on the physical disk (which is either a data block or a meta 
data block), copy the contents of the old block of the original 
device into the newly allocated block & return the address 
for the new block. Hence we modify our mapping function to 
accommodate for this operation. Our copy on write algorithm 
is described in Figure 4 & original kernel code is provided in 
the appendix. 
In this algorithm, root denotes the address of a radix node at 
each level & key denotes the logical block number address. 
The variable “op” here stands for the operation that caused 
the lookup to be invoked, either READ or WRITE. The 
argument “phy_blk_num” actually is a pointer to the 
location containing the actual address of the newly created 
block in the disk. 

It is clear from the algorithm that on each write operation, a 
new disk block is allocated on the physical device & all the 
node entries along the path from the root of the tree to the 
physical block become writable. This is explained in the 
Figure 5 which is actually taken from the Parallax paper[1].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 5: The snapshot mechanism (taken from the Parallax 

paper). 
 
 
 
 
 
 

Create_Radix_Snapshot:  
blockstore, device_id 
 
Step 1: Read vdi superblock from source 
device specified in the table. 
 
Step 2: Find the radix root address from 
the superblock pointer. 
 
Step 3: Using the source radix root 
address, create a clone of the source 
radix root & allocate the clone in the 
blockstore. 
 
Step 4: Allocate a new radix superblock 
for the snapshot device & make it point to 
the cloned radix root. 
 

Figure 3: Radix Snapshot creation Algorithm 

Radix_lookup_copy_on_write:  
device, blockstore,height, root, 
key,phy_blk_num, op 
 
Step 1: IF height=0 & op=WRITE 
Step 2: Clone the original data block 
Step 3: Make the new block writable 
Step 4: Store the address of the  
        newly allocated block in     
        phy_blk_num & also return it.  
Step 5: ELSE IF op=READ & height=0 
Step 6: Return the physical address of  
        data block in secondary device. 
       END IF 
Step 7: IF height>0 & root not writable  
Step 8: Clone root & make all entries  
        read_only 
   END IF 
Step 9: Calculate new height for child. 
Step 10: Calculate offset from key. 
Step 11: Call this function recursively    
         with new height &  
         root=node[offset] & save the  
         child address returned in  
         child_address. 
Step 12: Assign node[offset]=child_address 
Step 13: Save the radix node on disk &  
         make its address writable 
Step 14: Return root’s address. 
 

Figure 4: Lookup Copy on write algorithm  
 



6    CONCLUSIONS AND FUTURE WORK 
 
With our design, it is possible to create read-write snapshots 
of existing virtual disk images in the blockstore & also make 
recursive snapshots, that is, create snap shots of snap shots. 
We have tested this against pulling in loopback devices in 
blockstore & creating their snapshots. We have tested the 
writable logic by creating a junk file in VI editor & trying to 
save it on the snapshot device. We have also tested our 
system by creating snapshots of already existing snapshots & 
testing their writable nature. We have not done any 
benchmarking though on these writings or creation of 
snapshots. These are left as a future extension of this work. 
 
Another major work that we were unable to accomplish is to 
make the writable logic asynchronous by using an 
asynchronous kernel call from the mapping function. To 
make snapshot creation fast & effective, we must also 
incorporate buffer cache mechanism for faster writes. 
Currently, when two or more processes try to write on the 
snapshot device at the same time one of them blocks. This 
can be prevented by using asynchronous calls along with 
buffer cache protection during updates. It would be really 
interesting to benchmark these optimizations against 
traditional LVM operations. 
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Appendix: Source Codes 
 
A. Radix Snapshot Creation 

 
static int radix_ctr(struct dm_target *ti, unsigned int argc, char **argv) 
{ 

/* ... other codes  */ 
 
if(strcmp("snap",argv[2]) == 0) { /* 

“snap” is the keyword that specifies snap operation */ 
  int dev_id; 
  vdi_superblock *target_vds = NULL; 
  uint64_t snap_radix_root; 
 
  if (sscanf(argv[3], "%d", &dev_id) != 1) { 
   ti->error = "dm-radix: Invalid device address"; 
    
   error = EINVAL; 
   goto bad_bs; 
  } 
  printk ("%s: dev id = %d\n", __func__, dev_id); 
  if ((target_vds = vdi_superblock_lookup(rc->dev, dev_id)) == NULL) { 

ti->error = "dm-radix: Source device for snapshot not found in block  
                                                                   store"; 

   error = ENXIO; 
   goto bad_bs; 
  } 
  /* Ok, now we have confirmed that source device exists in blockstore */ 
   
  /* rc->vds also gives us the address of the vdi superblock */ 
   
  /* read vdi radix root address & clone the target radix root*/ 
  printk ("%s: target vdi radix root = %llu\n", __func__,  
                                                     vdi_get_radix_root(target_vds)); 
  snap_radix_root = clone_radix_root (rc->dev, bs, vdi_get_radix_root  
                                                                       (target_vds)); 
  printk ("radix root for snapshot = %llu\n", snap_radix_root); 
  if (snap_radix_root == 0) { 
   error = ENXIO; 
   goto bad_bs; 
  }  
  /* create superblock, but do not create radix root */  
  vds = create_vdi_superblock (rc->dev, bs,0x4565, dm_table_dev_minor(ti->table),  
                                                                                      0);  
  vdi_set_radix_root (vds, snap_radix_root); 
   
  r = write_vdi_superblock(rc->dev, bs, vds); 
  if (!r) { 
   ti->error = "dm-radix: Failed to write virtual disk superblock to disk"; 
   kfree (vds); 
   dm_put_device (ti, source->dev); 
   kfree (source); 
   error = EIO; 
   goto bad_dev;  
  } 
  else 
   rc->vds = vds; 
  ti->split_io = 8; 
 } 
 
/* other codes follow ...*/ 
 
} 



B. Copy on Write Mechanism 
 
uint64_t radix_lookup_copy_on_write(struct dm_dev *dev, blockstore *bs, int height,  
                        uint64_t root, uint64_t key, uint64_t *phy_blk_num, char rw) 
{ 
 int      offset; 
 uint64_t child; 
 radix_tree_node node = NULL; 
 struct page *page; 
 
 if (height == 0) 
 { 
  if (rw == READ) { 
   *phy_blk_num = root; 
  } 
  else { 
   *phy_blk_num = writable (clone_radix_block(dev, bs, getid(root))); 
  } 
   
  return (*phy_blk_num); 
 } 
 
 /* the root block may be smaller to ensure all leaves are full */ 
 height = ((height - 1) / RADIX_TREE_MAP_SHIFT) * RADIX_TREE_MAP_SHIFT; 
 offset = (key >> height) & RADIX_TREE_MAP_MASK; 
  
 /* We should never get a root which is Zero. */ 
 if (root == ZERO) { 
  *phy_blk_num = ZERO; 
  return ZERO; 
 } else { 
  page = read_radix_block(dev, getid(root)); 
  if (page != NULL) { 
   node = (radix_tree_node)page_address(page); 
  
   if (!iswritable(root)) { 
    /* need to clone this node */ 
    int i; 
    struct page *oldpage = page; 
    radix_tree_node oldnode = node; 
   
 
    page = alloc_page(GFP_KERNEL); 
    memset (page_address(page), 0, PAGE_SIZE); 
    node = (radix_tree_node)page_address(page); 
  
    for (i=0; i<RADIX_TREE_MAP_ENTRIES; i++) { 
     node[i] = oldnode[i] & ONEMASK; 
    } 
 
    block_page_put(oldpage); 
    root = ZERO; 
   } 
  } 
  else /* if page == NULL */ { 
   printk ("Node %llu could not be read from device \n", getid(root)); 
  } 
 } 
 
 if (node == NULL) { 
  return ZERO; 
 } 



 
 child = radix_lookup_copy_on_write(dev, bs, height, node[offset], key,  
                                                                phy_blk_num, rw); 
   
 if (child == ZERO) { 
  block_page_put (page); 
  return ZERO; 
 } else if (child == node[offset]) { 
  /* no change, so we already owned the child */ 
  block_page_put (page); 
  return root; 
 } 
 
 node[offset] = child; 
 
 /* new/cloned blocks need to be saved */ 
 if (root == ZERO) { 
  /* mark this as an owned block */ 
  lock_blockstore (bs); 
  root = alloc_radix_block(dev, bs, page); 
  unlock_blockstore (bs); 
  if (root) 
   root = writable(root); 
 } else { 
  if (write_radix_block(dev, getid(root), page) < 1) { 
   block_page_put (page); 
   return ZERO; 
  } 
 } 
 block_page_put(page); 
 return root; 
} 
 
 
 
 


