Lazy: Asynchrenous 1/0. Eor
Event-Driven Servers

Khaled Elmeleeay, Anupam Chanda and Alan L. Cex

Wil Zwaenepeel

Presented By: Anirban Sinha (aka Ani), anirbans@cs.ubc.ca

About the Authors

Assaeciate Professor, mainly inte: Distibuted Systems, Concurrent
Programming, Parallel Precessing etc. Received Pabifrom
University: off Rochester.

Also inl Rice University: currently, received his PhbD: from: Stanifierd.

Semehoew: thisi paper Is noet listed! in hisihomepage in the list of
pullications.

Bothi currently PhD students at Rice, hoth had thelr masters in
the year 2003 under: Alanr & Willy. This paper Is; prokakly done
during the time they were woerking om thelr masters thesis.

http://www.cs.rice.edu/~alc/
http://www.cs.rice.edu/~willy
http://www.cs.rice.edu/~willy/publications.html

Outline

ihe Prenlem.

he Propeseadl Selutien:
s [azy Asynchrenoeus I/0 (LAIO)
s [AIO Implementation;

Evaluation & Results.

Coenciusions
a Analysisi ofi the paper.

Problem

Event Driven Serversi must aveid: blocking) on
7@, resource allocation: ete:

Unix Like Systems: have nen-blocking) 1/O" that
can e performed only: 0 REtWek Seckets, not
files.

POSIX AlO supports asynchrenous I/Or enr only,
disk read & wrte, ne oether operatiens
supported:

We need to have a common all purpose
asynchronous 1O lidrary.

The Selutien
Lazy Asynchrenous I/0 (LAIO)

Addresses preblems with nen-klecking I/0

x Universality,

Covers all' 1/0 operations.

a Simplicity

Reguiresiless code.

a Is [azy, does asynchrenoeus eperation ONLY wihere
reguired, fialls back ter elder library system; call when
no blecking takesiplace.

a Implemented fully i user leveltlibrary

NG mediiication to kernel.

= LAIO netifies the application AETER the event
completes, net at any Intermediate stage.

Wiy Lazy?

Mest potentially Blocking eperations dont

actually:hleck:

s ExXperiments: 73%) - 86% of suchi eperations
donit block

Reducesi evernead for these eperatiens

that doe not really: bleck.

Event-Driven Servers

Event [oop processes -
) . Handler #1
[NCOomInNg, EVENLS ")
Eor each inceming L//)
event, It dispatches Y Handler #2
; Event
its handler])

. o0p
Single thread ofi e
execution : /1

.\/ E/:j Handler #k

A
Slide taken from original \/

presentation slide by authors -

Event Handler

lfTthe |/Or eperation
plecks

= The server stalls

To
event
loop

1/0 operation
(Network/Disk)

v

Complete handling
event

Slide taken from original
presentation slide by authors

THE LAIO API

FAIO; Lilbrary’ consists of three flnctions:
s Int laie’ syscall(int num, ...)

Wirapper areund the originalisyscall()
s VOId* laio_gethandle(void)

s Int 1a10__pell (laio. completion[] completions, int
ncempletions, timMespec ts)

lale._syscali()

[Lazily: converts: any: system; call 1t an
asymnchreneus call

I (1 block) {

|a16._syseall() returns immediately:
With' return value of system, call

1 else i (lhlock) {

la1e;_syscall() returns; immediately:
With return value -1

erno set to EINPROGRESS
Background' LAIO eperation

0

lale._syscali()

[Lazily: converts: any: system; call 1t an

asynchronous;call YN,
It (0 block) { g A
|a16._syseall() returns immediately: \ \
With! returns value ofi system; call e . 4
1 else if (block) 4 / Y 4
la1e;_syscall() returns; immediately: »

With return value -4
errne set to EINPROGRESS
Background' LAIO eperation

11

lale._gethandle()

[iT (Ivleck) {

Returns a hanadle representing| the last issued LAIO
OpPEeration

}

else {
NULL |s returned

12

laior_poll()

Waliits for the completion off hackgrounad
la1e: syscall() blecking operation.

Returns a count: of cempleted hackground LAIO
OpPEratiens.

Eillsran: array: withr completion enthHes Within the
iimeout Interval:

a One for each hlecking operation.

Each completion; entry: has

s Handle

a Return value
= Error value

13

Event Handler Withi LAIO

I eperation’ blIoeks |
x laie; syscall()r retuims

Immediately; \p
s Handler records LAIO :

handle laio_syscall()

a Returns to event loep

s Ceompletion notification
armves later

Operation

AY:

To pand'€]
event

loop \

Slide taken from original \ Complete handling

presentation slide by authors event

The Event Loop in LAIO

for {;;) {

/* poll for completed LAIO operations; laloc array is an array of LAIO completicn
* ghiects; it iz an output parameter */

1f ({ncomplated = lalo poll(laloc array, laloc array len, timeout)) == -1
/* handle error */

for (1 = 0; 1 < ncomplated; 1++) |
ret val = laloc array[i].lalo return value;
arr val = laloc array[i].lalo errmo;
/* find the event cbiect for lalec array[i].lalc handle #/
aventp-»ev_func(eventp-»ev arg/* == clientp */, ret val, err val);
/* dizable eventp; completions are one-time avents */

Event Handler in LAIO

client write{gtruct cllent *cliantp)

{

J/* initiate the operation; returns immediataly */
ret_wval = lale ayacall (S¥S _write, clientp-=-socket, clientp-=kuffer,
clientp-=byvtes to writa);
if (ret wval == -1} |
if {errnoc == EINPROCREESE) {
J* dnstruct event loocp to call client write complete() upon completion
* of this LATC operation; clientp 12 passed to client write completai) */
event set {&clientp-=event, lalco gethandle(), EV_LAIO COMPLETED,
client write complete, cllentp);
event add{&clientp-=event, NULL);
return; /* to the avant loop */
| else |
/* client write complete() handles erroras */
err val = errno;
}
| elaa
arr_wval = 0;
J¥ completed without blocking */
client write completeiclientp, ret_wval, err_wval);

LibEvent- A Event Notification: Lirary

http://monkey.org/—provos/libevent/

Weruse three metheds frem thaist library

s event_set()
Event Initialization

= event add()

Monitoring of this initialized event; has torbe done explicitly except
for persistent events.

s event_del()
Eveni Deletion.
AllFtheser methods work withi event objects withitnree
attriputes
= object being monitered, like a secket.

s Desjred state of the ebject When the event triggers, like data
availability: in socket.

= [he event handler itself.

17

Wihat Happens with Completion
Objects??

Withr eachi completion: elject, event leop has to
locate each associated: event ehject.

Call the contintiation functien stored In the event
ehject withrthe returned arguments; in the
completion elject:.

18

Outline

The Problem. ~ <

he Propeseadl Selutien: ’
s [azy Asynchrenous I/0 (LAIO) -~ . 2
s [AIO Implementation;

Evaluation & Results.

Coenciusions
a Analysisi ofi the paper.

19

LAIO! Implementation

LAIO: reguires scheduler activations.

Scheduler activations

x [lhe kemelf delivers an tpcalliwhen an
OPElalieN
Blocks - laio; syscall()
Unblocks - laie. poll()

20

LAIO Implementation
laio._syscall() — Nen-blocking case

Diagrams in this slide taken from the authors’ presentation slides

e Save context
| » Enable upcalls

J
sSue operation

e Disable upcalls
e Return retval

laio_syscall()

laior_syscall() — Bloecking case

Diagrams in this slide taken from the authors’ presentation slides

o :
i|aio_sysca||() » Disable upcalls I
: (N e errno = EINPROGRESS| |
! » Save context e Return -1 :
i © Enable upcalls) I
; T By RS Ton NATER 'K A A J
| S TE RV B e et
| | i |
. Issue operation |- upcall handler :

Steals old stack :
! using stored context |

M S S S S B BN BN BEEE BEEE BEEE B B SN BN BN B B BN SEEE BN SEEE BEEE B BN SN BEEE SEEE B B BN SN SN S B B S SN SEEE SEEE BEE B G SN BN B B e e .

When timeout occurs ...

Diagrams in this slide taken from the authors’ presentation slides

................................ - _ |
! upcall handler() : List ofi completions
! 1| ' IS retineved by the
i KConstruct completion structure\: | application using

: - laio operation handle. : laio._poll()

| « System call return value. |
: e Error code. |
! = Add completion to list of :
i completions. |

' |
| v
| e Background laio operation completes, thread dies :
| e Upcall on the current thread '

Outline

The Problem. ~ <

he Propeseadl Selutien: ’
s [azy Asynchrenous I/0 (LAIO) -~ . 2
= LAIO Implementation. . <

Evaluation & Results.

Coenciusions
a Analysisi ofi the paper.

24

Evaluation

Micre Benchmark

Reading a single byte through pipes, 100,000 times
poth when pipe was full' & When empty.

Eliminated the redundant times; o disk acCess.

When fiull; nerblecking 1/0 teok place, LAIO was) 1.4
slower than nen-plocking 1/0r & AlG Was even siower:
than LAIO.

Whenrempty, LAIOwWas' a facter of 1.08 slower than
AlO.

SIowness;, IFguess can e attrbuited te) the extra legic
that Is added tor check wihether an I/0 actually hlocks

— e price of being

25

Evaluations - Macrobenchmarks

Elashr Welr senver & thttpa Wel Sernver
s Each off them modified to use AlO; LAIO & Noen-Blocking| 10.

Intel Xeen 2.4 GHz with 2.GB memery.
Glgahbit Ethernet between machines.
EreeBSD) 5. 2-CURRENIT,

werwell werkieads
s Rice 1.1 GB' feetprint — fits N Server memory.
s Berkeley 6.4 GB footprint — oops! Does not fit!

Woitest cases fior each workioad
s Cold Cache — when cache IS previously empty.
a \Warm cache — when cache Is previeusly: full.

26

Summary. of Medified VWelservers

Server- Threaded Blocking Comments
Network-Disk operations

thrtpd-NB-B Single disk 'O stock version
conventional event-driven

TApd [ATOTAIO [Smgle | [womallAI0

Flash-NB-AMPED | Process-based Helpers stock version
multiple address spaces

Flash-NB-B comventional event-driven
Feh TAIOTAD [Smge | [womaTAD

Flash-NB-AIO disk 'O other

than read~wnite

Flash-NB-TAIO |Smgle | |
Flash-NB-AMTED | Thread-based Helpers _ single, shared address space

21

Perfiormance: Berkeley Workioad

Diagrams in this slide taken from the authors’ presentation slides

Berkeley Workload (warm cache)
300

© 950 1
ic»

= \(—

:200 ’/ Flash-NB-B
-

o 150 - —B-Flash-NB-AIO
==

g) 100 A Flash-LAIO-LAIO

50 -

O I I I

0 500 1000 1500
Number of Clients 28

Thro

Performance: Rice Workload

Diagrams in this slide taken from the authors’ presentation slides

Throughput (Mb/s)

Rice Workload (warm cache)

1000
800 — . .
600 —“ Flash-NB-B
—&-Flash-NB-AIO
400 - Flash-LAIO-LAIO
200 -
O [[[
0 500 1000 1500

Number of Clients 29

Inference frem Eigures

LAIO perferms; Better i Berkeley werkioad heth
I cold & Warm| Cases.

a (e werkiead does; NOT it 1n memory, so. blocking on
I/OrIs Inevitanle:

a Response time accordingly: falls:

FAIO! perferms poery. i RIce Walin case
x Norblecking I/©: eceurs, program: entirely: in memony.
5 REspense time: peor.

LAIO gains in; celd cache case With rice: Werkioad
x Compulsery misses during Initial' stages — Blecking.

30

IS It OKAY to use NB for network &
LAIO for disk?

ooa 1200 1400 1800 =00 1000 1200

" . = hhl"hﬂ'ul:']:ﬂ:ﬂ'h) N = = = H..iTI'tl:r- of Clierts) _ -_
(a) Throughput for Berkeley (b) Throughput for Rice

NG significant gain 1R using fash-NB-LAIO:
Conclusion — USE LAIO for both.

31

Compare: LAIO vs. AMPED

elpers

Server-Network-Disk | Threaded Blocking operations
Elash-LAIO-LAIO Single None
Elash-NB-ANMPED Process-hased |INone

Slide taken from original

presentation slide by authors

32

AMPED

ASymmetric multiprocess event-arven.

Simulatés asynchareneus hehaviour: Y.
submitting vlecking 1O eperations to)a
pPoel off threads — helper threads.

33

Performance of LAIO vs. AMPED

Diagrams in this slide taken from the authors’ presentation slides

Berkeley Workload (warm cache)

300
=2 250 -
O

=200 -

- ' Flash-NB-AMPED
o 150 -
g Flash-LAIO-LAIO
s 100 H

50 -

O I I I

0 500 1000 1500
Number of Clients 34

Thro

Performance ofi LAIO vs. AMPED

Diagrams in this slide taken from the authors’ presentation slides

Throughput (Mb/s)

Rice Workload (warm cache)

Flash-NB-AMPED

Flash-LAIO-LAIO

0 500 1000 1500

Number of Clients 35

COMPARE LOC: AMPED Vs LAIO

9.5% reduction In lines of code

36

Outline

The Problem. ~ <

he Propeseadl Selutien: ’
s [azy Asynchrenous I/0 (LAIO) -~ . 2
= LAIO Implementation. . <

Evaluation & Results, + <

Coenciusions
a Analysisi ofi the paper.

37

Conclusions

LAIO previdess unifierrn platiorm.

s Supports all system calls.

LAIO! IS alse simpler.
s Used unitermiy.

NO state maintenance:
NG helpers.

_ess lines of code.

38

Analysis

\\/eaknesses

s Noianalysis in the paper to shew: that beimng LAZY s really,
necessary: & firuntiul.

s Why'weuld peeple really care about LOC once we already: build
LAIO iBrany?

s “Elash LAIO-LAIO utilizes disk: more efficiently”, thus
outperforms flash-NB-AMPED: but HOW??? Not addressed.

s [s there a way: to Increase the response time fior LAIO 227 —
Suggestions??
Strengtis
s Addresses a pertinent proklem.
s Goed analysis, taking all'different test cases.
s Considers all pessible available present day: alternatives.

39

Questions & Discussions ...

40

	Lazy Asynchronous I/O For Event-Driven Servers
	About the Authors
	Outline
	Problem
	The Solution�Lazy Asynchronous I/O (LAIO)
	Why Lazy?
	Event-Driven Servers
	Event Handler
	THE LAIO API
	laio_syscall()
	laio_syscall()
	laio_gethandle()
	laio_poll()
	Event Handler With LAIO
	The Event Loop in LAIO
	Event Handler in LAIO
	LibEvent- A Event Notification Library
	What Happens with Completion Objects??
	Outline
	LAIO Implementation
	LAIO Implementation �laio_syscall() – Non-blocking case
	laio_syscall() – Blocking case
	When timeout occurs …
	Outline
	Evaluation
	Evaluations - Macrobenchmarks
	Summary of Modified Webservers
	Performance: Berkeley Workload
	Performance: Rice Workload
	Inference from Figures
	Is it OKAY to use NB for network & LAIO for disk?
	Compare: LAIO vs. AMPED
	AMPED
	Performance of LAIO vs. AMPED
	Performance of LAIO vs. AMPED
	COMPARE LOC: AMPED VS LAIO
	Outline
	Conclusions
	Analysis
	Questions & Discussions …

