
11

Virtual Memory Primitives for
User Programs

Andrew W. Appel & Kai Li

Department of Computer Science
Princeton University

Presented By: Anirban Sinha (aka Ani), anirbans@cs.ubc.ca

22

About the AuthorsAbout the Authors

•• Andrew W. Andrew W. AppelAppel
((http://http://www.cs.princeton.edu/~appelwww.cs.princeton.edu/~appel//))
““Research Interests.Research Interests. I do research in computer I do research in computer
security, compilers, programming languages, type security, compilers, programming languages, type

theory, and functional programming.theory, and functional programming. ““
•• Kai Li Kai Li

((http://www.cs.princeton.edu/~li/http://www.cs.princeton.edu/~li/))
– Supervisor of Dr. Mark Greenstreet (UBC)
– Mainly into Parallel & Distributed Systems &

Computer Architectures.

http://www.cs.princeton.edu/~appel/
http://www.cs.princeton.edu/~li/
http://www.cs.ubc.ca/cgi-bin/userinfo/user/mrg

33

OutlineOutline

•• The Main Objectives of the Paper.The Main Objectives of the Paper.
•• The User Level Algorithms.The User Level Algorithms.
•• Performance Analysis of VM Primitives.Performance Analysis of VM Primitives.
•• Conclusion drawn from the analysis.Conclusion drawn from the analysis.
•• Lessons Learnt Lessons Learnt -- Design Issues.Design Issues.
•• Analysis of the paper.Analysis of the paper.

44

ObjectivesObjectives

•• This is I guess the first survey paper This is I guess the first survey paper
we have got so far.we have got so far.

•• In the words of the authors:In the words of the authors:
–– ““What virtual memory primitives should What virtual memory primitives should

the operating system provide to user the operating system provide to user
processes & how well do todayprocesses & how well do today’’s s
operating systems provide themoperating systems provide them””

55

Virtual Machine TerminologiesVirtual Machine Terminologies

•• TRAP: Trap to kernel to handle page faults.TRAP: Trap to kernel to handle page faults.
•• PROT1: Write Protect 1 page.PROT1: Write Protect 1 page.
•• PROTN: Write protect N Pages.PROTN: Write protect N Pages.
•• UNPROT: Unprotect a single page.UNPROT: Unprotect a single page.
•• DIRTY: Return list of dirty pages.DIRTY: Return list of dirty pages.
•• MAP: Map save physical page at two different MAP: Map save physical page at two different

virtual pages with different levels of protection virtual pages with different levels of protection
at same address space.at same address space.

66

VM ApplicationsVM Applications

•• Concurrent Garbage Collection.Concurrent Garbage Collection.
•• Shared virtual memory between processors. Shared virtual memory between processors.
•• Concurrent Concurrent CheckpointingCheckpointing. .
•• Generational Garbage collection. Generational Garbage collection.
•• Persistent stores. Persistent stores.
•• Extending addressability.Extending addressability.
•• Data Compression Paging.Data Compression Paging.
•• Heap Overflow Detection. Heap Overflow Detection.

77

Application 1: Concurrent Garbage Application 1: Concurrent Garbage
CollectionCollection
•• Garbage collector threads can not run concurrently with Garbage collector threads can not run concurrently with

mutator threads on which garbage collection is to be mutator threads on which garbage collection is to be
performed.performed.

•• Garbage collection is normally run after the end of the Garbage collection is normally run after the end of the
execution of the threads.execution of the threads.

•• It poses a problem to run garbage collector on kernel It poses a problem to run garbage collector on kernel
threads of OSes because Operating System threads keep threads of OSes because Operating System threads keep
running, they never really STOP.running, they never really STOP.

•• We need to perform garbage collection concurrently.We need to perform garbage collection concurrently.
•• This algorithm tries to address this issue.This algorithm tries to address this issue.

88

BakerBaker’’s sequential real time s sequential real time
copying collector algorithmcopying collector algorithm
•• Two classes of objects, Two classes of objects, ““fromfrom”” & & ““toto””. Those reachable by current . Those reachable by current

thread from different paths, starting from registers & pointers thread from different paths, starting from registers & pointers for for
example, are moved from example, are moved from ““fromfrom”” space to space to ““toto”” space incrementally.space incrementally.

•• Mutator sees objects in Mutator sees objects in ““toto”” space only.space only.
•• When mutator allocates space for new objects using When mutator allocates space for new objects using ““newnew””, it , it

causes the collector to copy a few more objects from causes the collector to copy a few more objects from ““fromfrom”” space space
to to ““toto”” space.space.

•• New objects contain New objects contain ““toto”” space pointers only.space pointers only.
•• All objects in scanned area contain All objects in scanned area contain ““toto”” space objects only.space objects only.
•• Unscanned area contain objects that have not been classified as Unscanned area contain objects that have not been classified as

““garbagegarbage”” or or ““not garbagenot garbage””. They contain both . They contain both ““toto”” space & space & ““fromfrom””
space pointers.space pointers.

99

Use Of Protected VMUse Of Protected VM

•• Set unscanned area pages as Set unscanned area pages as ““no accessno access””..
•• When mutator thread tries to access an object in the When mutator thread tries to access an object in the

unscannedunscanned area, it causes a page fault.area, it causes a page fault.
•• Collector handles the TRAP, scans the objects on that Collector handles the TRAP, scans the objects on that

page, removes them to page, removes them to ““toto”” space, updated pointers & space, updated pointers &
unlocks the page.unlocks the page.

•• Mutator does not notice that the page was originally in Mutator does not notice that the page was originally in
““fromfrom”” space.space.

•• The collector runs concurrently in the unscanned area of The collector runs concurrently in the unscanned area of
the code, unprotects the pages as they are being the code, unprotects the pages as they are being
scanned & removes them to scanned & removes them to ““toto”” space. space.

•• If collector threads runs faster than mutator, page faults If collector threads runs faster than mutator, page faults
will be less. will be less.

•• Uses TRAP, PROTN, UNPROT & MAP2.Uses TRAP, PROTN, UNPROT & MAP2.

1010

Application 2: Shared VMApplication 2: Shared VM

•• Multiple Processors, some common Multiple Processors, some common
shared VM area. shared VM area.

•• SVM address space partitioned into SVM address space partitioned into
pages.pages.

•• ““read onlyread only”” pages are shared.pages are shared.
•• Writable pages reside in physical Writable pages reside in physical

memory of a SINGLE processor.memory of a SINGLE processor.
•• If a processor wants to write to a If a processor wants to write to a

page other than its own, it must page other than its own, it must
obtain a copy of it & invalidate other obtain a copy of it & invalidate other
copies.copies.

•• A page fault occurs when a processor A page fault occurs when a processor
tries to write to a page other than its tries to write to a page other than its
own.own.

•• Uses Trap, PROT1 & UNPROT.Uses Trap, PROT1 & UNPROT.

1111

Application 3: Concurrent Application 3: Concurrent
CheckpointingCheckpointing
•• Originally, in order to have checkpoints, one had to stop the ruOriginally, in order to have checkpoints, one had to stop the running nning

thread.thread.
•• It is possible to have concurrent real time checkpoints.It is possible to have concurrent real time checkpoints.
•• Set accessibility of entire address space pages to read only.Set accessibility of entire address space pages to read only.
•• Start copying the pages to a separate virtual address space. Start copying the pages to a separate virtual address space.
•• When copying of a page is done set it to When copying of a page is done set it to ““readread--writewrite”” mode.mode.
•• When the check pointing thread access a page in When the check pointing thread access a page in ““readread”” mode, no mode, no

fault occurs.fault occurs.
•• When it tries to write, write memory access fault occurs, the paWhen it tries to write, write memory access fault occurs, the page is ge is

quickly copied to separate address space & status of the currentquickly copied to separate address space & status of the current
page set to page set to ““readread--writewrite””..

•• Restart faulting thread.Restart faulting thread.
•• Incremental checkpoints can also be applied at ease with this Incremental checkpoints can also be applied at ease with this

algorithm.algorithm.
•• Uses PROT, UNPROT, PROT1, PROTN, DIRTY.Uses PROT, UNPROT, PROT1, PROTN, DIRTY.

1212

Application 4: Generational Application 4: Generational
Garbage collectionGarbage collection
•• Dynamically allocated records in programming Dynamically allocated records in programming

languages has two important properties:languages has two important properties:
–– Younger records are more likely to terminate Younger records are more likely to terminate

soon than older records.soon than older records.
–– More pointers go from younger records to older More pointers go from younger records to older

records than the reverse.records than the reverse.
–– If i<j, very few pointers from If i<j, very few pointers from GGii to to GGjj..

•• Garbage collection efforts thus should be Garbage collection efforts thus should be
concentrated on younger records.concentrated on younger records.

•• Inspect DIRTY pages from Inspect DIRTY pages from GiGi’’ss. Else:. Else:--
–– Write protect pages of all Write protect pages of all GGii’’ss..
–– When When GGjj calls calls GGii, trap is generated., trap is generated.
–– Save the trapping address in a list. Save the trapping address in a list.
–– Unprotect page.Unprotect page.
–– Find the possible pages from the list that are Find the possible pages from the list that are

candidates for garbage in candidates for garbage in GGjj..
•• Uses PROTN, UNPROT, TRAP or simply DIRTY.Uses PROTN, UNPROT, TRAP or simply DIRTY.

Gi

Gj

1313

Application 5: Persistent StoresApplication 5: Persistent Stores

•• A data structure, namely a heap that is saved into the A data structure, namely a heap that is saved into the
disk.disk.

•• Kept on a stable storage device.Kept on a stable storage device.
•• Implemented in UNIX using:Implemented in UNIX using:--

–– void *void *mmap(voidmmap(void **addraddr, , size_tsize_t lenlen, , intint protprot, , intint flagsflags,,
intint fildesfildes, , off_toff_t offoff););

–– Check Check http://www.opengroup.org/onlinepubs/009695399/functions/mmap.htmhttp://www.opengroup.org/onlinepubs/009695399/functions/mmap.htmll

•• Pointer traversal in persistent store is same as in Pointer traversal in persistent store is same as in incoreincore
traversal.traversal.

•• Page fault can occur if the currently accessed page is not Page fault can occur if the currently accessed page is not
actually in memory.actually in memory.

•• Permanent image of the file in the disk should not be Permanent image of the file in the disk should not be
modified until modified until ““commitcommit””. During . During ““commitcommit””, all dirty pages , all dirty pages
moved to disk.moved to disk.

•• Use garbage collection at commit time.Use garbage collection at commit time.

http://www.opengroup.org/onlinepubs/009695399/functions/mmap.html

1414

Application 6: Heap Overflow Application 6: Heap Overflow
DetectionDetection
•• Ordinarily, heap overflow is detected by compare & Ordinarily, heap overflow is detected by compare &

conditional branch during each memory allocation.conditional branch during each memory allocation.
•• Can be done more efficiently if we have a guard page Can be done more efficiently if we have a guard page

which is protected at the end of the memory allocated which is protected at the end of the memory allocated
for heap.for heap.

•• Page fault occurs when program tries to access a page Page fault occurs when program tries to access a page
beyond the Heap area.beyond the Heap area.

•• Garbage collector is invoked which may free some Garbage collector is invoked which may free some
unused heap pages or a rearrangement may be unused heap pages or a rearrangement may be
required.required.

•• Restart faulting threads.Restart faulting threads.
•• PROT1 & TRAP used.PROT1 & TRAP used.

1515

OutlineOutline

•• The Main Objectives of the Paper. The Main Objectives of the Paper.
•• The User Level Algorithms. The User Level Algorithms.
•• Performance Analysis of VM Primitives.Performance Analysis of VM Primitives.
•• Conclusion drawn from the analysis.Conclusion drawn from the analysis.
•• Lessons Learnt Lessons Learnt -- Design Issues.Design Issues.
•• Analysis of the paper.Analysis of the paper.

1616

Performance AnalysisPerformance Analysis
•• Four stages:Four stages:

1.1. Sum of PROT1, TRAP & UNPROT by 100 repetitions Sum of PROT1, TRAP & UNPROT by 100 repetitions
of the following stepsof the following steps

Access a random protected page.Access a random protected page.
In TRAP, unprotect this page & protect some other page.In TRAP, unprotect this page & protect some other page.

2.2. Sum of PROTN, TRAP & UNPROT.Sum of PROTN, TRAP & UNPROT.
Protect 100 pages.Protect 100 pages.
Access each page in random sequence.Access each page in random sequence.
In TRAP handler, unprotect faulting page.In TRAP handler, unprotect faulting page.

3.3. Measure the time for a TRAP operation which does Measure the time for a TRAP operation which does
not change protection of a page not change protection of a page –– Useful for heapUseful for heap--
overflow detections.overflow detections.

4.4. Time for a single ADD instructions my measuring Time for a single ADD instructions my measuring
time taken in a loop that iterates 20 times with each time taken in a loop that iterates 20 times with each
loop having 18 ADD instructions.loop having 18 ADD instructions.

1717

ResultsResults

An interesting statistic will be to normalize these results withAn interesting statistic will be to normalize these results with
CPU speed to get the actual picture.CPU speed to get the actual picture.

1818

Normalized statisticNormalized statistic
•• The figure shows the The figure shows the

number of ADD number of ADD
instructions that can instructions that can
be executed by the be executed by the
CPU during the time it CPU during the time it
executes PROT+TRAP executes PROT+TRAP
+ UNPROT.+ UNPROT.

•• Shows clearly that Shows clearly that
memory protection memory protection
mechanisms & TRAP mechanisms & TRAP
are not optimized in are not optimized in
most operating most operating
systems.systems.

1919

ConclusionsConclusions

•• Wide variations between the performance of the Wide variations between the performance of the
operating systems on the same hardware.operating systems on the same hardware.
–– Indicative of the fact that there may be scopes of Indicative of the fact that there may be scopes of

improvement.improvement.
•• Since all the applications discussed involve CPU Since all the applications discussed involve CPU

only & not disk (which has very high seek only & not disk (which has very high seek
latency times), it is important that these latency times), it is important that these
operations are optimized otherwise this becomes operations are optimized otherwise this becomes
a bottleneck.a bottleneck.

•• The situation becomes more acute in real time The situation becomes more acute in real time
systems where time constraints are very rigid.systems where time constraints are very rigid.

2020

OutlineOutline

•• The Main Objectives of the Paper. The Main Objectives of the Paper.
•• The User Level Algorithms. The User Level Algorithms.
•• Performance Analysis of VM Primitives. Performance Analysis of VM Primitives.
•• Conclusion drawn from the analysis. Conclusion drawn from the analysis.
•• Lessons Learnt Lessons Learnt -- Design Issues.Design Issues.
•• Analysis of the paper.Analysis of the paper.

2121

Lessons Learnt from Analysis Lessons Learnt from Analysis –– The The
Design IssuesDesign Issues

•• Make pages less accessible in batches & Make pages less accessible in batches &
more accessible in singles as & when more accessible in singles as & when
required by the process.required by the process.
–– When a page is made less accessible, When a page is made less accessible,

outdated information in TLB can cause illegal outdated information in TLB can cause illegal
access violation.access violation.

–– Can be prevented by flushing the TLB pages Can be prevented by flushing the TLB pages
in batches because batch operation reduces in batches because batch operation reduces
the cost per page.the cost per page.

2222

Lessons Learnt from Analysis Lessons Learnt from Analysis –– The The
Design IssuesDesign Issues

•• If page faults are handled by CPU, handling time If page faults are handled by CPU, handling time
directly depends on the page size. directly depends on the page size.
–– It is important to make page sized optimal.It is important to make page sized optimal.
–– Traditionally though page sizes has been larger Traditionally though page sizes has been larger

because when page faults occurs between physical because when page faults occurs between physical
memory & disk, large disk access time called for memory & disk, large disk access time called for
having large page size to reduce disk IO time. having large page size to reduce disk IO time.

–– Good idea is to small pages for PROT & UNPROT Good idea is to small pages for PROT & UNPROT
operations & for disk page faults, contiguous multioperations & for disk page faults, contiguous multi--
page blocks can be used (Used in VAX).page blocks can be used (Used in VAX).

2323

Lessons Learnt from Analysis Lessons Learnt from Analysis –– The The
Design IssuesDesign Issues

•• When User mode service routines need to When User mode service routines need to
access a protected page, allow them by:access a protected page, allow them by:--
–– Either have multiple mapping of the same Either have multiple mapping of the same

page at different addresses with different page at different addresses with different
protection levels in the same address page.protection levels in the same address page.

–– Use a separate system call.Use a separate system call.
–– other alternates exists (did not really other alternates exists (did not really

understand fully) understand fully) ……

2424

Is it too tough to implement the Is it too tough to implement the
applications in OSes?applications in OSes?

•• Hmm, synchronous behavior in user Hmm, synchronous behavior in user
programs create a lot of trouble in programs create a lot of trouble in
pipelined architectures.pipelined architectures.

•• But all except heap overflow detection use But all except heap overflow detection use
asynchronous behavior. asynchronous behavior.

•• Heap overflow detection using VM page Heap overflow detection using VM page
faults in VAX or Motorola is thus ugly & is faults in VAX or Motorola is thus ugly & is
not reliable.not reliable.

•• Thus its not really a big ask! Thus its not really a big ask!

2525

Analysis of the PaperAnalysis of the Paper

•• Strengths:Strengths:--
–– Discusses a whole lot of applications of Discusses a whole lot of applications of

protected VM.protected VM.
–– Brings out the weaknesses of Brings out the weaknesses of OSOS’’ss in in

implementations of this implementations of this algosalgos..
–– Proposes some design optimization issues that Proposes some design optimization issues that

must be looked into.must be looked into.

2626

Analysis of the PaperAnalysis of the Paper

•• Weaknesses:Weaknesses:--
–– I did not find the addressability extension & data I did not find the addressability extension & data

compression applications too compelling.compression applications too compelling.
–– Analysis of VM primitive performance in modern Analysis of VM primitive performance in modern OSOS’’ss

not very exhaustive. not very exhaustive.
–– ItIt’’s an old paper, ACM 1991; it would be interesting s an old paper, ACM 1991; it would be interesting

to discuss how far these ideas are still relevant I the to discuss how far these ideas are still relevant I the
context of modern systems having large physical context of modern systems having large physical
memory.memory.

–– Any other comments ? Any other comments ? ……

2727

Questions, Comments & Questions, Comments &
Discussions Discussions ……

	Virtual Memory Primitives for User Programs�
	About the Authors
	Outline
	Objectives
	Virtual Machine Terminologies
	VM Applications
	Application 1: Concurrent Garbage Collection
	Baker’s sequential real time copying collector algorithm
	Use Of Protected VM
	Application 2: Shared VM
	Application 3: Concurrent Checkpointing
	Application 4: Generational Garbage collection
	Application 5: Persistent Stores
	Application 6: Heap Overflow Detection
	Outline
	Performance Analysis
	Results
	Normalized statistic
	Conclusions
	Outline
	Lessons Learnt from Analysis – The Design Issues
	Lessons Learnt from Analysis – The Design Issues
	Lessons Learnt from Analysis – The Design Issues
	Is it too tough to implement the applications in OSes?
	Analysis of the Paper
	Analysis of the Paper
	Questions, Comments & Discussions …

