epartment of Computer Science
' Princeton University

Presented By: Anirban Sinha (aka Ani), anirbans@cs.ubc.ca

AJOLTRig]e ut0|:§__

\nrlrevv W r\ooeJ
SLSHAVIIVECS prnceton. edu/~appel/)

“Hesee feh Interests. | do research in computer
/, gg pﬂers programming Ianguages type

=" J..:(ht’fp J/AA.CS. princeton.edu/=li/)

.—-z_..-.-—

“f:.';-- ~ = Supervisor of Dr. Mark Greenstreet (UBC)

~ ~ = Mainly into Parallel & Distributed Systems &
Computer Architectures.

http://www.cs.princeton.edu/~appel/
http://www.cs.princeton.edu/~li/
http://www.cs.ubc.ca/cgi-bin/userinfo/user/mrg

OLfTlIf]e

Trig Vel OQJ clives off the Paper.

IENDSEY ;J“ Algorlthms

errormane e Analysis of VM Primitives.

C nrJLuc | drawn from the analysis.

S50 FLearnt Design Issues.
ySIS s of the paper.

> Thiis 5 Nefl ess the first survey paper
WENIEN e‘ ot so far.

i the v ords of the authors:

'ﬁ--"

-

!) at virttal iImemory. primitives should
”7/76 operating: System: provide to User

-ﬂ’—: — pmcesses & fhow well do todays
= operating systems provide thent’

o R

" - - -— -
v]rir.ua_s ﬂ aeh@rmimiﬁﬁ?"

JIIRAP: r p to kernel to handle page faults.
RO Wiite Protect 1 page.

- PE <Q “"’erte protect N Pages.

= ,,g Ji“ OT Unprotect a single page.

E:t_.‘ D RTY Return list of dirty pages.

— —-—'
e

= IAP: Map save physical page at two different
virtuall pages with different levels of protection
at same address space.

— —
ViVPApplications. e

e il

——

-

Q’\

Elient Garnbage Collection. v
're_ ed_v e'tual MEMmOry between processors. v
slirrent Checkpointing. v/
_ Q_ ational Garbage collection. v

--l'_._—

= E5 el 'ér&stent stores. v’
___.1-&'-

— ‘f‘xtendlng addressability.

=

“» Data Compression Paging.
® Heap Overflow Detection. v

- : - _—
Aplication 1: Concurrent G [—

eollEction —

-

Gelfgzl e (ollector threads cannot run concurrently with
GO reads @I Which garbage collection Is to be
perfofnldes

Gelfgzle]s collection is normally run after the end of the
EXEC!H Jtion ofi the threads.

;-i_-:__:f‘J:ge p5es a problem to run garbage collector on kernel
= [hreads of OSes because Operating System threads keep
_f—‘-__: = ﬁJ_nnlng they never really STOP.

s \We need to perform garbage collection concurrently.
® This algorithm tries to address this issue.

SEless seguential real time
coome collect%‘ﬁ—‘algont

]
> Two clesggsioiiee jects, “from” & “to”. Those reachable Py’ current
'rnregld foss) dlfferent paths, starting from reglsters & pointers for
el oJe, Emoved firom “frem” space to “to” space incrementally.
Villieto r SE; s objects In “to” space only.

\/\/rwf utator allocates space for new objects using “new”, It
= ,_,‘u the collector to copy a few more objects from “from” space
e (e o space
_:_F?;_:; :_Ngw objects contain “to” space pointers only.
— = All objects in scanned area contain “to” space objects only.
- ® Unscanned area contain objects that have not been classified as

“garbage” or “not garbage”. They contain both “to” space & “from”
space pointers.

-y el

JSE Of Protected VM

—

R e —

Iiscenned anea PAJES &8s Mo access™

\/\/ IER mutator threadl tries to access an object in the
llr SealEDiarea, It causes a page fault.

Collgeis handles the TRAP, scans the objects on that
Oglc 8, remoyes them to “to” Space, updated pointers &
= unloc ks the page.

T e *‘tator does not notice that the page was originally in
_;i'" — “from” space.

~ s The collector runs concurrently in the unscanned area of
the code, unprotects the pages as they are being
scanned & removes them to “to” space.

® |f collector threads runs faster than mutator, page faults
willi be less.

e Uses TRAP, PROTN, UNPROT & MAP2.

—

CPU 1

Memory 1 Memory 2 Memory N

':_Only” pages alre Shared Mapping Mapping Mapping
manager manager manager
-ltable Pages reside in physical - “

__-

= memony of a SINGLE processor.
==, ’3.:; a8 processor wants to write to a

7*-* ~ page other than its own, it must
. optain a copy. of it & invalidate other

- COpiEs.

* A page fault occurs when a processor
tries to write to a page other than its
own.

e Uses Trap, PROT1 & UNPROT.

Shared virtual memory

10

—

plication 3: Concurre*ntl!‘_}..ﬁ-r

OrngaJJ/ ‘orderto have chieckpoints, one had to stop the running
;nredcl =

:514- /10 have concurrent real time checkpoints.

sibility’ of entire address space pages to read only.
% St ; s‘ ’mg the pages to a separate virtual address space.
- opylng of a page Is done set It to “read-write” mode.

e HW_@L Althe check pointing thread access a page in “read” mode, no
.:--_—.-.-— Uit eccurs.

5: .- When it tries to write, write memory access fault occurs, the page is
~ quickly copied to separate address space & status of the current
~ page set to “read-write”.

: e Restart faulting thread.

Incrementall checkpoints can also be applied at ease with this
algorithm.

e Uses PROT, UNPROT, PROT1, PROTN, DIRTY.

11

r\ooJJJ,-_ oNn 4 Generatlonal

Crzlf el)e Col%

- _)/flrlmJQcH/ eJJoecl_Eed reeorrb If] oror eiiming
ERYUEGES HEAS WO Important' propertles

— Younge records are more likely to terminate
SOONNNEN older records.

— Mora e H‘ Iers go from yeunger records to older
ECOrUS | an the reverse.

~siEk #very few pointers from G, to G;.

o J,\M;L - collection efforts thus should be
S CONGET trated On younger records. &5

am

'_':--

sl’TSpect DIRTY pages from Gi’'s. Else:- J
:—?'.'—' - — Whnite protect pages of all G/'s.
— _' — When G; calls G, trap is generated.
. — Save the trapping address in a list.
— Unprotect page.

— Find the possible pages from the list that are
candidates for garbage in G;.

® Uses PROTN, UNPROT, TRAP or simply DIRTY.

12

\OOJJ b n%;@_'relsten@eé‘é"

ture, namely aheap that IS saved Nto the

Epio e table storage device.

Jmoleg ted im UNIX using:-

— -=-_~f.’meap(v0|d *aaar, size_t /en, int prot, int flags,
~Int fildes, off_t off);

=— ,_.-_@ ECkiAtitns//AWwWww. openaroup.ora/onlinepubs/009695399/functions/mmap. html

“""'_ Dointer traversal in perS|stent store Is same as In incore

% “traversal.

~ = Page fault can occur If the currently accessed page Is not
- actually in memory.

* Permanent image of the file in the disk should not be
modified until “commit”. During “commit”, all dirty pages
moved to disk.

e Use garbage collection at commit time.

13

http://www.opengroup.org/onlinepubs/009695399/functions/mmap.html

Application 6: Heap Overflo ;,

DELECTIoN .

OrrlmrlrJJ\ ~lieap everfiow: Is etected Py compare &
(OHFIJFJOf al branch during each memory allocation.

geire done more efficiently if we have a guard page
Weles ‘@ rotected at the end of the memory allocated
fof glerl p.

- Peiofe “fault occurs when program tries to access a page
= jr‘-_;;-‘-:c eyond the Heap area.

ﬁff_earbage collector is Invoked which may free some
- Unused heap pages or a rearrangement may be
reguired.

e Restart faulting threads.
® PROT1 & TRAP used.

14

OLfTlIf]e

Trig Vel OQJ clives off the Paper.

Trie Usey ;J“ | Algorithms. v/

errormane e Analysis of VM Primitives.

C nrJLuc | drawn from the analysis.

S50 FLearnt Design Issues.
ySIS s of the paper.

15

Perios ance AnalyS|s " —

=

- Ol lf SIAEES, - e

SUm: of PROTl TRAP & UNPROT by 100 repetitions
Oif thie followmg steps

s A e" 3655 a random protected page.

r f n TRAP, unprotect this page & protect some other page.

! um 0ff PROTN, TRAP & UNPROT.
— m_} Protect 100 pages.

~ Access each page in random seguence.
—:,: » In'TRAP handler, unprotect faulting page.

3. Measure the time for a TRAP operation which does
not change protection of a page — Useful for heap-
overflow detections.

4. Time for a single ADD instructions my measuring
time taken in a loop that iterates 20 times with each
loop having 18 ADD Instructions. -

—_
P
RESHIILS

F 3

RAP TRAP .

Machine 0S ADD TRAP iﬂﬁgaﬂ’l‘ E]]:L-I%EDT MAPZ PAGESIZE
Sun 3/60 Sun0S 4.0 | 0.12 760 1238 1016 | yes 8192
Sun 3 /60 Sun0S 4.1 0.12 20180 1800 | yes 8192
Sun 3/60 Mach 2.5(xp) | 0.12 3300 2540 | yes 8192
Sun 3 /60 Mach 2.5(exc) | 0.12 S350 ZHB0 | yes 8192
SparcStn 1 Sun0S 4.0.3¢ | 0.05 *019 *R30 | yes 4096
SparcStn 1 Sun(5 4.1 0.05 | 1230 1008 904 | yes 4096
| SparcStn 1 Mach 2.5{xp) | 0.05 1550 1230 | yes 4096
== Sparchin 1 Mach 2.5(exc) | 0.05 1770 1470 | yes 4096
DEC 3100 Ultrix 4.1 0.062 | 210 393 M| no 4096
: DEC 3100 Mach 2.5 (xp) | 0.062 937 766 | no 4096
DEC 3100 Mach 2.5 (exc) | 0.062 1203 1063 | no 4096
pVax 3 Ultrix 2.3 0.21 314 (612 486 | no 1024
1386 on 1PSC/2 NX/2 0.15 172 302 252 | yes 4096

An Interesting statistic will be to normalize these results with

CPU speed to get the actual picture.

17

—

Orr alized statistic . —

Sun 3/604+5un54.0 .
sun 3/604+5un(54.1 I |
Sun Efir*}—l-"hhd:h.:i‘-.;n I |
Sun 3/60+Mach2 5(exc) N |
Sparc Stn1+Sun0S4.0. 3¢ I |
SparcStnl4+5un(i54.1 I |
SparcStnl4+Mach2 5(xp) NI |
SparcStnl+Mach2. 5(exc) HNEGTNGNGNGNGN |
=11 DECIT00+Ultrixd. 1 L
- DEC31004+Mach2 5(xp) 1 N_
- DEC31004+Mach2 5(xp) NG |
. -ShOWS Clearly that pVax3+Ultrix4.1 |
~ memory protection 1386+NX/2 lﬁ | |

mechanisms. & TRAP 0 10,000 20,000
are not optimized in
MOSt Ope ratlﬂg Figure 2: Instructions per PROT + TRAP + UNPROT.
SyStemS The black bars show the results when pages

are protected in large batches (PROTN), and
the white bars are the additional time taken
when pages are protected one at a time
(PROTI).

- S

NI 'nS'-—-,E - -—-}"a"

N

RVHENAIaORS BETWEER the performance off the
ggerElils g Systems on the same hardware.

mrth— Ve of the fact that there may be scopes of
er fOVEMENt.

- :u ¢ all the applications discussed involve CPU

=0nly & not disk (which has very high seek
atency times), it Is important that these
eperatlons are optimized otherwise this becomes
a bottleneck.

® The situation becomes more acute in real time
systems where time constraints are very rigid.

19

1 Objectives of the Paper. v
! }'{Level Algorithms. v/
Off ance Analysis of VM Primitives. v
-;ausmn drawn from the analysis. v
= *"«Eessons Learnt - Design Issues.
-® Analysis of the paper.

20

o -
Besspns Learnt from Analy3|s i pTev—
DES]C —Issues!&,

BV EIRE ages less acceSS|bIe In batches &
ere accessible in singles as & when
reelull d 9y the process.

— \‘v jen a page Is made less accessible,
= Gutdated information in TLB can cause illegal

-,f"- ‘access violation.
- — Can be prevented by flushing the TLB pages
In batches because batch operation reduces

the cost per page.

21

1=

> |f gelefe faults are handled by CPU, handlmg time
(lJreg,r.J/ﬂe On the page size.
ENSsiimportant to make page sized optimal.

= __d'ltlonally though page sizes has been larger
e e_cause when page faults occurs between physical

= memory & disk, large disk access time called for

_'-.

~— having large page size to reduce disk 10 time.

== - Good Idea Is to small pages for PROT & UNPROT
operations & for disk page faults, contiguous multi-
page blocks can be used (Used in VAX).

22

ser mode service routines need to
& protected page, allow them by:-

r have multiple mapping of the same
= D ge at different addresses with different
ﬁrotectlon levels in the same address page.

— —Use a separate system call.

— other alternates exists (did not really
understand fully) ...

'l"_
_——
—
"

23

ISNIRIOE, tough to |mplemen
gplications mﬁ%‘es’? -

- ——————— ——y

SIS SYNChroNeUs enavior 1IN User
BlPElcis create a lot ofi trouble in
PIPEIINED architectures.

~ Bu it all'except heap overflow detection use
= asynchrenous behavior.
ﬁ—

=% Heap overflow detection using VM page
- faults in VAX or Motorola is thus ugly & is
not reliable.

® Thus Its not really a big ask!

—
e

24

Afe Lly 1S f-{ﬂg‘;per

=0

a .

olrengtns

— Djgel JS je s a Whole lot off applications of
Orgr‘ ted VM.
_,—'Fﬁ ngs out the weaknesses of OS’s In
= J‘fnpiementatlons of this algos.
—_—

=— E-Proposes some design optimization issues that

e

-~ must be looked into.

]
@
= e

l‘

AS

T

I

- : - . -
Arrailysifs f-twﬁer—d”"

S i

i - — I

o Wazllk IESSE: s

— | ¢l me u"flﬂd the addressability extension & data
C om,)f'* sion| applications too compelling.

- r\ir 575|s ofi VM primitive performance in modern OS’s
= ;'—E ot Very exhaustive.

__ _..d-_., —
=

:_ ~— It's an old paper, ACM 1991; it would be interesting
fj: -—to discuss how far these ideas are still relevant | the
= - context of modern systems having large physical
memory.

— Any other comments ? ...

26

27

	Virtual Memory Primitives for User Programs�
	About the Authors
	Outline
	Objectives
	Virtual Machine Terminologies
	VM Applications
	Application 1: Concurrent Garbage Collection
	Baker’s sequential real time copying collector algorithm
	Use Of Protected VM
	Application 2: Shared VM
	Application 3: Concurrent Checkpointing
	Application 4: Generational Garbage collection
	Application 5: Persistent Stores
	Application 6: Heap Overflow Detection
	Outline
	Performance Analysis
	Results
	Normalized statistic
	Conclusions
	Outline
	Lessons Learnt from Analysis – The Design Issues
	Lessons Learnt from Analysis – The Design Issues
	Lessons Learnt from Analysis – The Design Issues
	Is it too tough to implement the applications in OSes?
	Analysis of the Paper
	Analysis of the Paper
	Questions, Comments & Discussions …

